Silsoe Lower School Calculation Policy
 September 2023

Addition

Concrete	Pictorial	Abstract
Combining two parts to make a whole (use a variety of resources)		Use a part, part whole model with numbers (four is a part, three is a part, the whole is seven)
Counting on using number lines by using cubes or numicon	A bar model which encourages children to count on ?	The abstract number line: What is 2 more than 4 ? What is the sum of $2+4$? What is the total of 4 and 2 ? $4+2$
Regrouping to make 10 by using ten frames and counters / cubes or using numicon: $6+5$	Children to draw the ten frame and counters / cubes	Children to develop an understanding of equality $\begin{aligned} & \mathrm{Eg} 6+\square=11 \\ & 6+5=5+\square \\ & 6+5=\square+4 \end{aligned}$

Tens and Ones + Ones using base 10. Continue to develop understanding of partitioning and place value $34+5$	Children to represent the concrete using a drawing of base 10 or place value counters	$34+5=$
Tens and ones (TO) + Tens and Ones (T0). Continue to develop understanding of partitioning and place value and use this to support addition. Start with no exchanging 36 + 25 lones		
Tens		

Subtraction

\begin{tabular}{|c|c|c|}
\hline Concrete \& Pictorial \& Abstract \\
\hline \begin{tabular}{l}
Physically taking away and removing objects from a whole \(4-3=1\) \\
Use a ten frame physically removing what is being taken away
\end{tabular} \& \begin{tabular}{l}
Children to draw the concrete resources they are using and crossing out \\
Use a ten frame crossing out what is being taken away \\
First there were 7 counters. \\
Then \(\underline{2}\) counters were taken away. \\
Now there are 5 counters.
\[
7-2=5
\]
\end{tabular} \& 4-3=

$$
=4-3
$$

4	
3	$?$

\hline Counting back (using number lines or number tracks) \& Children to represent what they see pictorially Eg \& Children to use marked or blank number lines

\hline
\end{tabular}

Subtract the ones, subtract the tens,
continue if calculations involve hundreds
or thousands.

| | Remove the tens and ones from the |
| :--- | :--- | :--- |
| smallest number as above | |

Multiplication

Concrete	Pictorial	Abstract
Repeated grouping / repeated addition (using different objects)	Children to represent the practical resources in a picture Eg XX XX XX XX XX XX Use a bar model for a more structured method	Repeated addition $4+4+4$ Multiplication 3×4
- e ere fele		
	$\bigcirc \bigcirc$ \bigcirc \bigcirc	
Use a number line to show repeated groups (and to count in different steps)	Represent these steps pictorially along a number track	Abstract number line $3 \times 4=12$

Division

Concrete	Pictorial	Abstract
Understand division as sharing using concrete objects	This can also be done in a bar so all 4 operations have a similar structure:	$6 \div 2=3$ What's the calculation?
Understand division as grouping $14 \div 2$ means how many twos can go into 14 ?	How many groups of 2 can we make from 14?	This can be shown on a number line

Two digit divided by 1 digit using base ten or place value counters (no exchange) If an exchange is required exchange 1 ten for ten ones practically	Children to represent the base 10 or place value counters pictorially	Record the number sentences $48 \div 4=12$
Two digit divided by 1 digit using place value counters and a place value chart	$39 \div 3=13$Tens Ones 10 10 0	Use the part part whole model to represent each stage of the calculation $39 \div 3=13$ $10+3=13$

